Q.P. Code: 19HS0830

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

BTech I Year I Semester Supplementary Examinations Feb-2021 ALGEBRA AND CALCULUS

(Common to all branches)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Find the characteristic equation of $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence compute A^{-1} . Also find the 12M

matrix representation of $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$.

2 a Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation and find

b Reduce the matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ into Echelon form and find its rank. 4M

a Verify Cauchy's mean value theorem for $f(x) = \sin x$ and $g(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$. 6M

b Obtain the Maclaurin's series expression of the following function of $\cos x$.

6M

8M

OR

4 a Verify Rolle's theorem for $f(x) = \log\left(\frac{x^2 + 6}{5x}\right)$ in (2, 3).

b Show that $1 + x + \frac{x^2}{2} \le e^x \le 1 + x + \frac{x^2}{2} e^x$ for every $x \ge 0$.

6M

6M

UNIT-III

5 **a** If $f(x,y) = \frac{1}{\sqrt{y}} e^{\frac{-(x-a)^2}{4y}}$, then prove that $f_{xy} = f_{yx}$.

Calculate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ if $u = \frac{x}{\sqrt{1-t^2}}$, $v = \frac{y}{\sqrt{1-t^2}}$ and $w = \frac{z}{\sqrt{1-t^2}}$ where $t = \sqrt{x^2 + y^2 + z^2}.$

OR

6 a Find the minimum value of $x^2+y^2+z^2$ given x+y+z=3a.

b If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$?

Q.P. Code: 19HS0830

UNIT-IV

- Change the order of integration in $I = \int_{0}^{1} \int_{0}^{2-x} (xy) dy dx$ and hence evaluate the same.
 - b Evaluate the following improper integrals $\int_{1}^{\infty} \frac{1}{x^4} dx$.

8M

OR

8 Evaluate $\iiint z^2 dx dy dz$ over the region defined by $z \ge 0, x^2 + y^2 + z^2 \le a^2$.

UNIT-V

- 9 a Prove that $\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2} \beta (1, \frac{1}{2}).$ 6M
 - b Show that $\int_0^\infty x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$

OR

- 10 a Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta \cdot \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin\theta}} d\theta = \pi.$
 - **b** Prove that $\int_{0}^{1} (\log(1/y))^{n-1} dy = \Gamma(n), n > 1.$ 6M

*** END ***